首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9797篇
  免费   1073篇
  国内免费   2036篇
  2023年   199篇
  2022年   187篇
  2021年   319篇
  2020年   333篇
  2019年   411篇
  2018年   395篇
  2017年   385篇
  2016年   401篇
  2015年   406篇
  2014年   458篇
  2013年   646篇
  2012年   430篇
  2011年   467篇
  2010年   397篇
  2009年   434篇
  2008年   454篇
  2007年   526篇
  2006年   535篇
  2005年   460篇
  2004年   361篇
  2003年   467篇
  2002年   380篇
  2001年   340篇
  2000年   298篇
  1999年   294篇
  1998年   242篇
  1997年   253篇
  1996年   248篇
  1995年   226篇
  1994年   231篇
  1993年   229篇
  1992年   188篇
  1991年   198篇
  1990年   159篇
  1989年   158篇
  1988年   131篇
  1987年   123篇
  1986年   78篇
  1985年   87篇
  1984年   81篇
  1983年   49篇
  1982年   59篇
  1981年   37篇
  1980年   38篇
  1979年   24篇
  1978年   14篇
  1977年   16篇
  1976年   17篇
  1973年   8篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
After a 2 h exposure of intact soybean nodules to high concentrations of NaCl (100mol m?3) or oxygen (8OkPa O2), morphometric computations carried out using an image analysis technique on semi-thin sections showed that both treatments induced a decrease in the area of the inner-cortex cells, which were then characterized by a tangential elongation. In contrast, no significant change in area occurred in the middle-cortex cells although their elongation decreased. Electron microscopic observations showed that in the inner-cortex cells changes included the presence of wall infoldings, an enlarged periplasmic space and a lobate nucleus whose chromatin distribution differed from that of the control. Structural changes also occurred in the endoplasmic reticulum, microbodies, mitochondria and plastids. From several of these changes, which are similar to those noted in osmocontractil cells in response to external stimuli, it can be hypothesized that the inner cortex may provide a potential mechanism for the control of oxygen diffusion through the nodules.  相似文献   
2.
A. Kumar  S. Sharma  S. Mishra 《Plant biosystems》2016,150(5):1056-1064
This study was conducted to study the long-term impact of bioinoculants, Azotobacter chroococcum and arbuscular mycorrhizal fungi (AMF) on growth and biomass yield of Jatropha curcas grown in nursery and in field conditions. The experiment was set up in a randomized block design, and the following treatments was designed (T1 = control, T2 = Azotobacter, T3 = inoculation with AMF, and T4 = inoculation with Azotobacter + AMF). Data on various growth attributes (shoot height and shoot diameter) and biochemical parameters [leaf relative water content (LRWC), sugars, protein, and photosynthetic pigments] were recorded up to 6 months in the nursery and in the field (18 months). Results pertaining to morpho-physiological traits showed Azotobacter and AMF consortia increase shoot height, shoot diameter, LRWC, sugars, proteins, and photosynthetic pigments over control under nursery conditions. Besides enhancing the plant growth, these bioinoculants helped in better establishment of Jatropha plants under field conditions. A significant improvement in the shoot height, shoot diameter, fruit yield/plant, and seed yield (g)/plant was evident in 18-month-old Jatropha plants under field conditions when Azotobacter and AMF were co-inoculated. This work supports the application of bioinoculants for establishment of Jatropha curcas in semi-arid regions.  相似文献   
3.
4.
目录     
《生态学杂志》2015,26(7):0
  相似文献   
5.
6.
《Molecular cell》2020,77(5):1055-1065.e4
Download : Download video (66MB)  相似文献   
7.
8.
9.
  • The experiment was conducted in the 2016/17 crop season in a greenhouse at Passo Fundo University, Brazil. We hypothesised that the morphological characteristics and biochemical and anatomical composition of soybean roots and shoots, when competing with weeds during different growth periods, are negatively affected, so current concepts of competition between plants should also consider changes in plant roots.
  • The soybean cultivar P 95R51 and horseweed (Conyza bonariensis) were used. The treatments consisted of the presence or absence of weeds during different coexistence periods of soybean with horseweed. The periods were V0–V3, V0–V6, V0–R2, V3–R6, V6–R6 and R2–R6, where V0 was the date of soybean sowing and V3, V6, R2 and R6 were phenological stages of the crop. Two fresh roots were used to examine morphological traits. Four roots were used for quantification of dry matter and secondary metabolites.
  • Root length was reduced by 21%, 14% and 20% when competing with a weed in the V0–V3, V0–V6 and R2–R6 coexistence periods, respectively. Total phenol content in the V0–V6 and V0–R2 periods was reduced when plants were in competition with weeds; a similar trend was found for flavonoids in the V0–V6 period.
  • Soybean–horseweed competition from crop emergence to the V6 stage, in general, affects shoot and root morphological traits and the biochemical composition of the soybean roots. The presence of horseweed at the V3, V6 and R2 stages does not negatively alter the traits evaluated. Root anatomical composition is not modified during all coexistence periods with horseweed.
  相似文献   
10.
In order to help design experiments with minirhizotrons or interpret data from such experiments, a modelling approach is a valuable tool to complement empirical approaches. The general principle of this modelling approach is to calculate and to study the part of a theoretical root system that is intersected by passes through a virtual minirhizotron tube (modelled here as a cylinder). Various outputs can be calculated from this part of the root system, and related to the surrounding root system which is perfectly known, since it has been simulated and stored in a data structure. Therefore, the method involves two levels of modelling that are presented and discussed: the root system architecture of a crop, and the observations that can be achieved with minirhizotron tubes. Illustrations of the method are presented to study the effect of several factors on the rooting depth curves, and to show how images may be calculated to mimic what can actually be viewed from inside the tube. These first results show that the maximum rooting depth curves, as virtually observed in the minirhizotron tube, present large variations and strongly underestimate the maximum rooting depth of the modelled root system (up to 60 cm in average). The underestimation is still more critical when the radius of the tube is lower than 3 cm, and when the tube is close to the vertical (angle lower than 0.2 rad). The use of the 0.9 quantile instead of the average value, for each of the observation dates, leads to a better estimation of the maximum rooting depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号